

Co-Synthesis of Hydrogen and High-Value Carbon Products from Methane Pyrolysis

Matteo Cargnello, Stanford University
Team Members: Arun Majumdar, Raghubir Gupta

Project Vision

We are developing regenerable catalysts to convert methane into carbon nanotubes and hydrogen without carbon emissions by controlling the reactivity of the carbon-catalyst interface

Total project cost:	\$1.47M
Length	24 mo.

The Concept and the Project Objectives

Project Objectives

- ➤ Develop a catalytic process for production of H₂ and CNTs – both are important!
- Understand the mechanism of CNT formation and dislodging from the catalyst

Project Targets

- ➤ 50% CH₄ conversion with 75% CNT yield
- Long-term cycle testing with >75% activity
- > Path to 3 kg CO₂/kg H₂ and \$1.5/kg H₂

The Team

Arun Majumdar expertise in energy generation technologies, heat transfer

Matteo Cargnello expertise in catalysis, nanostructured materials

Raghubir Gupta expertise in catalysis, engineering processes, scale-up

Dohyung Kim Postdoc

Shang Zhai Postdoc

Jimmy Rojas **Grad Student**

Eddie Sun Grad Student

Sebastian Marin-Quiros UnderGrad

Vasudev Haribal Research Process Engineer

J.P. Shen Senior Chemist

Value Proposition

$$CH_{4(g)} \rightarrow C_{(s)} + 2 H_{2(g)}$$
(CNT)

What is our primary product for this technology?

Target is: >50% produced carbon as CNTs

through optimization of catalyst, process design, catalyst regeneration and other operating conditions

Zhang et.al., The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage. *Small*, *9*(8), *1237–1265*.

For 10 t H₂ production per day

Price of hydrogen can be lowered by driving production of CNTs

Main Results: Fluidized Bed Process

Designed and constructed a bench-scale fluidized bed reactor system for CH₄ pyrolysis

Main Results: Methane Pyrolysis, >99% H₂

85% CH₄ conversion (close to thermodynamic equilibrium) >99% H₂ selectivity (CO content <1%) GHSV: 1,221 hr-1

15

Stanford-Susteon January 12, 2022

Main Results: Carbon Product

Carbon produced is a mix of single-walled and multi-walled CNTs

Main Results: Use of Carbon Product

CNTs made by this process were cast into a CNT film

In collaboration with Matteo Pasquali, *Rice University*

Only 7 of 27 total commerciallyproduced CNTs could be spun into fibers (based on 2017 paper)

Figure of merit (FOM): ~1000

Figure of merit (FOM) = -Rs In(T) Sheet resistance(Rs) and optical transmittance(T) (state of the art FOM: ~6, lower is better)

CNT film made by Matteo Pasquali group @ Rice University from our CNTs (after purification)

Influence of Carbon Nanotube Characteristics on Macroscopic Fiber Properties

Dmitri E. Tsentalovich, Robert J. Headrick, Francesca Mirri, Junli Hao, Natnael Behabtu, Colin C. Young, and Matteo Pasquali*

Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States

Main Results: Preliminary TEA

Process Section	Base Capital (\$MM)	Contribution	Power (kWh _e /kg H ₂)
Reactor ¹	1.96	20%	
Reactor Heating ²	1.51	16%	12.0
Carbon Separation ³	0.16	2%	
Hydrogen Purification ⁴	6.00	62%	5.7
Total	9.64	100%	17.7

	10,000 kg/day			
Total Capital Investment, \$	15,700,000			
Total Capital Investment, \$/kg/day	1570			
Natural Gas Feed, MSCFD	2270			
Hydrogen Purity, mol%	99.999			
Carbon Production, kg/d	29,950			
Production Cost, \$/kg H ₂				
Capital	0.68			
Electricity/Power ⁵ /Utilities	0.48			
Consumables	0.65			
O&M	0.30			
Total Cost	2.11			

Sensitivity Analysis

Even without carbon product credit

This demonstrates the potential to produce H_2 at <\$2/kg

²Heating equipment: \$60K for 7kWe

³Includes a cyclone and bag filter

Challenges and Potential Technical Partnerships

- Biggest challenge is to effectively regenerate the catalyst between cycles and minimize attrition
- Effective separation of the catalyst from the carbon product needs to be achieved
- Study of the carbon-catalyst interface is critical: in situ spectroscopy and characterization methods
- Collaboration with other groups is being explored
- Risk mitigation: parallel approaches are being pursued with several supported metal systems
- Multi-cycle testing to demonstrate stability and carbon removal strategies are ongoing

